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Queuing theory is applied to oscillatory phenomena encountered during anodic dissolution, with
numerical illustration provided by a laboratory-scale copper dissolution process. The theory in-
terprets oscillation as a two-phase process, where the ®rst phase consists of ion arrival to the elec-
trode and subsequent steps to form a solid deposit on it, and the second phase consists of the
deposition process itself followed by partial dissolution of the deposit. The two phases correspond to
the process of client-arrival and client-servicing in queuing theory. In particular, the M/M/1, the
G/M/1 and the M/M/k queuing models are quantitatively compared in terms of queuing time and
certain other queuing characteristics.
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1. Introduction

Queuing theory is concerned with relating the mag-
nitude of a queue to rates at which arrivals and ser-

vicing proceed. Ticket counters, automobiles at tra�c
lights, factory assembly lines, patients in a hospital
emergency room etc. are the most obvious examples
of queue formation. Although it is not immediately

List of symbols

A�t� (arbitrary) probability density function in the
G/M/1 model

A��l; z� Laplace transform of A�t� with transform
variable l�1ÿ z�

e0 electric charge of a monovalent ion
(0.1062 aC)

i current density
L mean number/expectation of participants in

a queuing system
Lq mean number/expectation of participants in

a queue
N random number of participants in a queuing

system; n its numerical value
p numerical value of a probability
Q random number of ionic participants under-

going the electrode reaction
q limiting value of a probability
S�x� probability density function of random ser-

vice time X in the M/G/1 model
s mean value/expectation of random service

time X in the M/G/1 model
T random time; t its numerical value
X random service time; x its numerical value
Y random queuing time; y its numerical value

Greek letters
g numerical value of the smallest root of

Equation 24
H random total time; h its numerical value
k mean rate (or density) of process I

l mean rate (or density) of process II
q tra�c density, de®ned as k=l
s random transition time
/ probability density function

Subscripts
i,j,k process number or an integer value
I denotes process I

Superscripts
o initial value

Special symbols
CTU characteristic time unit
E mean value/expectation of a random variable
G/M/1 single server model with arbitrary probability

distribution for process I, and negative ex-
ponential distribution for process II

IAR ion arrival/reaction sequence
M/G/1 single server model with Poisson distribution

for process I and an arbitrary probability
distribution for process II

M/M/1 single server model with Poisson distribution
for process I and negative exponential dis-
tribution for process II

M/M/k k-server model with Poisson distribution for
process I and negative exponential distribu-
tion for process II

P probability
Var variance of a random distribution
e a state of the random process
n a random process
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obvious, queuing theory may serve for an interpr-
etation of an electrode reaction [1] as a servicing
centre for electrons arriving to the solid surface. In
this view, the overpotential of an electrode reaction
may be related to the electron queue at the solid±
liquid interface. This particular interpretation is by
no means the only application of queuing theory
which might be envisaged for electrochemical phe-
nomena. The purpose of this paper is to present an
application of queuing theory to the oscillatory be-
haviour of a certain class of electrode reactions,
where an electrode reaction/®lm formation sequence
is followed by deposition and partial redissolution in
a cyclic manner. Numerical illustrations are provided
for a speci®c experimental anodic copper dissolution
process.

One major incentive for the approach is to dem-
onstrate the cross-fertilization of di�erent disciplines.
By adapting seemingly unrelated concepts of queuing
theory to electrochemical phenomena, a set of con-
ceptual `equivalences' can be established for the sake
of a quantitative analysis. This philosophy does not
intend to dismiss traditional approaches, but it aims
to support scant mechanistic information available in
the case of complex process whose mechanism is
poorly (if at all) understood.

2. Basic concepts and framework of analysis

Following the fundamental theory of queues [2±5],
active centres on the electrode surface are considered
to be a collection of servers; ions, particles and mol-
ecules participating in the electrode reaction
! deposit formation! partial redissolution process
are clients. In this framework, the overall physical
process may be viewed as an arrival of clients to a
collection of servers, followed by processing by the
servers. Speci®cally, arrival into the queue may be
interpreted as an ion arriving ®rst at the surface, then
undergoing an appropriate reaction or reaction se-
quence resulting in a compound (e.g., an oxide) ready
for deposition on the active centres of the electrode
surface. This part of the overall process is called
`phase I' in the sequel. Servicing represents the de-
position/partial redissolution phase, resulting in the
reappearance of an ion. This part of the overall
process is called `phase II' in the sequel. The arriving
ions can move randomly towards any active centre,
but it is assumed that in the immediate vicinity of the
surface, each ion would move to the nearest centre.
Thus, the electrode surface is regarded as a multiple
set of (single) servers, each server acting simulta-
neously in the same manner. Hence, it is immaterial if
a single deposition and dissolution step originates at
the same site. In the simplest adaptation of the the-
ory, it is su�cient to analyse the overall process in
terms of a single-server queue with average rate k for
phase I and average rate l for phase II, but multiple-
server queues can also be envisaged, as shown in later
Sections. The number of deposit particles formed
during a ®nite time interval, and the length of time

required for deposition/redissolution are taken to be
random variables possessing speci®c individual
probability distributions.

3. Analysis via the M/M/1 model for single-server
queues

Consider ®rst phase I. Within a certain time interval,
the probability of more than one ion arriving and
reacting is zero, and the probability of an ion arrival/
reaction (IAR) is a ®nite number between zero and
unity. If the occurrence of IAR is independent from
one such time interval to another, then the proba-
bility distribution of IAR occurrences in a ®nite time
interval x is Poissonian, for example,

P �NI � n� � �kx�n exp�ÿkx�=n! n � 0; 1; 2; . . . �1�
with mean value E�NI� � kx and variance
Var�NI� � kx. The time T elapsed between two adja-
cent IAR, equivalent to the concept of interarrival
time in queuing theory, has an exponential distribu-
tion with probability density function k exp�ÿkt�,
that is,

P �T > t� � P �NI � 0 in �0; t�� � exp�ÿkt� �2�
where t is an arbitrary time instant. It follows that
E�t� � 1=k, and Var�T � � 1=k2.

Consider now phase II. Let i � 1 be the index for
the state of deposition pursuant to an IAR, and i � 2
the index for the state of redissolution, liberating
temporarily an active centre. If n�t� denotes the ran-
dom deposition/redissolution process, then at zero
time:

P �n�t� � ei� � poi �3�
and

P �n�d� t� � ej j n�d� � ei� � pij�t� �4�
indicating that phase II is a Markov process, pro-
vided that at an arbitrary time d the state is either e1
or e2. It follows that

P �s > t� � exp�ÿlt� �5�
if s is the random time required for the process to
leave one state by going to the other state. It follows
that E�s� � 1=l and Var�s� � 1=l2.

The queue consists of Q�t� number of ions un-
dergoing reaction associated with the active centre;
each active centre constitutes a reaction site for a
single molecule. One molecule of the reaction product
becomes a deposit upon service by the active centre,
hence the number of participants in the process is
N�t� � Q�t� � 1 (since one active centre can service
only one molecule at any given time). Thus, if the rate
of phase II exceeds the rate of phase I on an average,
a steady state is ®nally established, and the limiting
probability

pn � lim
t!1�N�t� � n� � �1ÿ q�qn; q < 1 �6�

shows a geometric distribution for N with parameter
q. It then follows that under steady-state conditions,
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and for q < 1, the mean number of participants in the
system is

L � E�N � � q=�1ÿ q� �7�
and the mean number of participants in the queue is

Lq � Lÿ q �8�
Let Y be the random queuing time, that is, the time
lapsed between the moment of arrival of an ion and
the moment when deposition of the molecule origi-
nating with the ion commences. In an empty system
Y � 0 with probability of occurrence

P �Y � 0� � 1ÿ q �9�
With probability density function of queuing time

/�y� � q�lÿ k� exp�ÿ�lÿ k�y� �10�
Equation 11:

P �Y � 0� �
Z1
0

/�y�dy � 1 �11�

indicates that the random variable Y is partly dis-
crete, partly continuous.

In a similar manner, the distribution of service
time X and the total time H � Y � X may be ana-
lysed, with the following results. Since H has the
probability density function

/�h� � �lÿ k� exp�ÿ�lÿ k�h� �12�
the mean queuing time is given by

E�Y � � k=�l�lÿ k�� �13�
and the mean total time is given by

E�H� � E�Y � � E�X � � 1=�lÿ k� �14�
Hence, Equations 7 and 8 may be written alterna-
tively as

L � kE�H� �15�
and

Lq � kE�Y � �16�

4. Application of the M/M/1 model to the dynamics
of anodic copper dissolution

The anodic dissolution of copper into certain aque-
ous electrolytes exhibits a quasi-periodic current os-
cillation over an intermediate time period [7].
Oscillation is due to a cyclic deposition/redissolution
of copper oxides in the presence of small amounts of
thiocyanate ions. The exact mechanism of this pro-
cess is not understood at present, although basic
chaos theory has tentatively been suggested as one
possible avenue of interpretation [8]. Queuing theory
o�ers a probabilistic means of analysing the cycling
phenomenon, illustrated in Fig. 1 [9]. The oscillatory
regime is ¯anked by a preoscillation and a postos-
cillation zone; in the former, steady-state service is
not yet available, that is, the active centres on the
surface are not yet fully activated. In the postoscil-

lation zone the rates of phase I and phase II are es-
sentially identical, resulting in a steady ¯ow without
queuing. The intermediate zone for oscillation is
characterized by two di�erent process rates. Phase I
comprises (i) the `arrival' (i.e., the appearance) of
cuprous ions, due to anodic dissolution of copper
metal at the surface and (ii) their oxidation to Cu2O
and CuO, and their reaction with thiocyanate ions to
form CuSCN. The latter is quantitatively very small
compared to oxide forming, since the thiocyanate ion
concentration in the electrolyte is at the mmol/L
level. Phase II comprises (i) the deposition of these
copper compounds on the anode surface and (ii) the
partial dissolution of the anode ®lm liberating a
portion of the anode for (continuing) anodic disso-
lution of copper metal. The peaks (i.e., the minimum
and maximum values of the instantaneous current
density) in Fig. 1 represent the highest and the lowest
availability of active centres (i.e., servers).

The mean process rates were determined from the
eighty one oscillatory cycles in Fig. 1, by measuring
the slope of each half-cycle. Slopes pertaining to
increasing current yield the mean rate of
8:68 mC cmÿ2 sÿ1 for ion-arrival to the electrode, and
slopes pertaining to decreasing current yield the mean
rate of 19:198 mC cmÿ2 sÿ1 for deposition/partial
dissolution over the average half-cycle duration of 4 s.
Assuming that the electrode reaction is a single elec-
tron transfer process (i.e., that cuprous ions are dis-
charged in the electrode reaction to form cuprous
oxide, which may partially be oxidized to CuO in a
purely chemical step), the ionic ¯ows are k � 8:68=e0
� 5:418� 106 ion sÿ1 (phase I) and l � 19:98=e0
� 12:47� 106 ion sÿ1 (phase II) per cm2 of the anode
surface. The mean density ratio (i.e., tra�c density in
queuing theory) is q � k=l � 0:434. It is convenient
for a simpli®ed computation to de®ne a characteristic
or reference time unit (CTU) which adjusts the pro-
cess densities to values near unity, although this nu-
merical value has no theoretical signi®cance. Setting
CTU � 10 as (i.e., 10ÿ17 s), the process densities
become k � 0:542 ion/CTU and l � 1:247 ion/CTU

Fig. 1. A typical oscillation pattern observed during the anodic
dissolution of copper into an aqueous 4 mol dmÿ3 NaCl=
1mmol dmÿ3 KSCN solution (pH 3.4) at an anodic overpotential
of ÿ60 mV vs SCE [9; Fig. 2].
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per cm2 of the anode surface (with q � 0:434 un-
changed). The queue characteristics obtained via the
M/M/1 model are: pn � 0:434n�1:467 (Equation 6);
L � 0:767 (Equation 7); Lq � 0:333; E�Y � � 0:616
CTU or 6.16 as (Equation 13) and E�H� � 1:418
CTU or 14.18 as (Equation 14). Tables 1 and 2
provide pertinent probability distributions.

5. Analysis

5.1. E�ect of active centre/server population
on queue characteristics

It was pointed out earlier that the single-server ap-
proach is based on the postulate of the electrode
surface containing a multiple set of identically func-
tioning single active centres/servers. If this postulate
is relaxed, each participant in phase I can have a
choice of several adjacent servers and the M/M/k
queuing model may be invoked, where k is the
number of servers. Although k is a priori unknown, it
is possible to estimate the probability that an exactly j
number of servers is occupied at any given time by
the Erlang formula [3]:

pj � �1=j!�qj=
Xk

j�0
�1=j!�qj j � 0; 1; 2; . . . �17�

which yields for the anodic dissolution of copper the
probabilities p0 � 0:566; p1 � 0:246; p2 � 0:107;
p3 � 0:046 and p4 � 9:58� 10ÿ4. Thus, there is an
about 19% probability that more than one server, an
about 8% probability that more than two servers,
and an about 3.5% probability that more than three
servers are engaged at any given time. As shown in
Table 3, the M/M/k model predicts an increasingly
more e�cient service by the active centres; in the
limit, the mean total time tends to the reciprocal of
the service density, 1=l, indicating that if the number
of active centres is very large, the time spent in the
queue during phase I tends to zero and the rate of the
overall process is determined essentially by the rate of
phase II. The two-server model is, in fact, quite ad-
equate for the estimation of L and E�H�, since the
total number of active centres available for service
has a very small e�ect on either characteristic for
kP2.

5.2. Application of the M/G/1 model

The M/G/1 model retains the Poisson distribution for
phase I with mean rate k, but it allows the service
time X to have an (a priori) arbitrary probability
density function S�x� with mean value

s �
Z1
0

xS�x�dx �18�

Table 1. The distribution of the number of participants N in a queue

associated with an active centre in an anodic copper dissolution

process [7 ]

N P �N � n� (Eq. 6)*
0 0.566

1 0.246

2 0.107

3 0.0462

4 0.02

5 0.0087

* in steady state, assuming that the queue-formation transient is

negligible

Table 2. The cumulative probability distribution of queuing time Y in

an anodic copper dissolution process [7]

y (CTU) P �Y Oy�*
0 P �Y � 0� � 0:566 (Equation 9)

1 0.785

2 0.894

3 0.948

4 0.974

5 0.987

* P �Y Oy� � P �Y � 0� � 0:434�1ÿ exp�ÿ0:705 y��

Table 3. The e�ect of server population on the queuing system characteristics in an anodic copper dissolution process [7]; M/M/k models

Characteristic Service (active centre) availability per participant, k

1 2 3 4

Probability of not

more than k servers

being engaged at a

given time

0.812 0.919 0.965 0.966

Mean number of

participants in the

queue, Lq

0.333 0.0215 0.00175 0.00013

Mean number of

participants in the

system, L

0.767 0.455 0.436 0.434

Mean value of

queuing time,

E(Y)/as

6.16 0.396 0.0323 0.00239

Mean value of total

time, E�H�/as
14.18 8.39 8.04 8.02

limE�Y � � 0; limE�h� � 1=l; limL � q as k !1
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If the random number Nn denotes the number of
participants joining the queue during the time spent
by the nth participant in the system, the probability
that Nn has a speci®c value k is given by Equation 19:

P �Nn � k� � �1=k!�
Z1
0

�kh�k exp�ÿkh�/�h�dh �19�

where /�h� is the probability density function for the
time spent by the nth participant in the system. The
establishment of S�x� and /�h� for phase II can be
e�ected in principle by classical means of identi®ca-
tion from experimental data [e.g., 11, 12], but the
procedure is time consuming.

5.3. Application of the G/M/1 model

In the G/M/1 model, the random interarrival time for
participants in phase I has an arbitrary probability
density function A�t�, and service time in phase II has
a negative exponential distribution with mean rate l.
If Qn is the number of participants already in the
system as nth participant arrives, then the probability
that Qn is exactly a number k (at steady state) is
qk � lim P �Qn � k� for large n, and the probability
that an exactly j number of participants is engaged in
phase II during any interarrival interval is

pj � �1=j!�
Z1
0

�lt�j exp�ÿlt�A�t�dt �20�

The two probabilities are related by the expression

qk �
X1
i�0

q
i�kÿ1 pi k � 1; 2; 3; . . . �21�

with

q0 �
X1
i�0

qini �22�
where ni is the probability that more than j partici-
pants undergo phase II in an interarrival interval. It
may be shown upon an involved derivation [13] that

qk � �1ÿ g�gk k � 0; 1; 2 . . . �23�
where g is the smallest root of the algebraic equation

z � A��l; z� �24�
and A� is the Laplace transform of A�t� with trans-
form variable l�1ÿ z�. The queue characteristics may
be calculated as L � g=�1ÿ g�; E�Y � � g=�l�1ÿ g��
and E�h� � 1=�l�1ÿ g��.

6. Discussion

It follows from the preceding paragraphs that the
knowledge of the probability distribution of random
variables in phase I and phase II is required for the
use of queuing theory. The ®rst question to ask is
whether service-time associated with phase II can be
assumed to possess a negative exponential distribu-
tion, that is, if Equation 5 is appropriate. To prove

that it is [14], let W�x� be a function of time, repre-
senting the probability that service time X is larger
than a chosen time t. If X is larger than an arbitrary
time instant t1, then the conditional probability is
given by

P �X > �t � t1� j X > t1� � W�t� �27�
since the process will be in the same state at time
�t � t1� as at time t1. It follows from the basic theorem
of conditional probabilities (e.g., [15]) that

P �X > �t � t1�� � P �X > �t � t1� j X > t1�P �X > t1�
or, alternatively, that

W�t � t1� � W�t�W�t1� �28�
that is,

logW�t � t1� � logW�t� � logW�t1� �29�
for arbitrary t and t1. As shown by Feller [16],
Equation 29 implies that logW�t� � ÿkt, apart from
the trivial result of logW�t� � 1. Equation 5 imme-
diately follows from this result.

A second concern is the probability distribution
appropriate for phase I. The assumption made in
Section 3 about the Poisson distribution of the
number of participants engaging in the queuing
process may be supported by the argument that this
process resembles nucleation, where the Poisson dis-
tribution has previously been proposed for site acti-
vation [17] and the formation of a new phase [18].
Since the time-lapse distribution is a single-parameter
negative exponential function (see Equation 2) in this
case, one could argue that a two-parameter gamma-
distribution might o�er a more realistic interpretation
of phase I with probability density function

/�t� � �1=C�a�ba�taÿ1 exp�ÿt=b� �30�

carrying E�T � � ab and Var�T � � ab2. From the ex-
perimentally determined values of the reciprocal of
the mean rate, 1.845 CTU and its standard deviation
of 3.035 CTU, the parameter estimates a � 0:4 CTU
and b � 5:0 CTU are computed. Then, taking the
G/M/1 model and following the procedure shown in
Section 5.3, the queue characteristics g � 0:611;
L � 1:571; E�Y � � 1:259CTU (12.59 as) and
E�H� � 2:061 CTU (20.61 as) are obtained. Com-
parison with the M/M/k queue models (Table 3)
indicates that the M/M/2 and M/M/3 models some-
what overestimate the e�ciency of the overall pro-
cess; reasonable agreement between the M/M/1 and
the G/M/1 (G: gamma distribution) model suggests
that the single-server model o�ers an admissible
probabilistic description of the anodic copper disso-
lution process. The consistently larger numerical
values of queue parameters in the G/M/1 model
suggest nevertheless that the variance of the rate es-
timates might be too large for the employment of a
single-parameter model based only on the mean value
of the experimental rate of oscillation.

In summary, the M/M/1 model yields the follow-
ing interpretation of the overall process, under the

AN APPLICATION OF QUEUING THEORY TO ANODIC DISSOLUTION 415



experimental conditions indicated in Fig. 1: on an
average, the Cu� ! Cu2O/CuO sequence requires
about 6 as (attoseconds) per cuprous ion, and about
14 as for one oxidation! deposition! partial re-
dissolution cycle. There exists, on an average, a small
queue prior to oxide deposition (since the predicted
number of ions/oxides waiting in the queue is 0.33).
The mean number of Cu2O or CuO molecules in the
overall process is about 1.5. The G/M/1 (G: gamma
distribution) model predicts about 1.3 as for the
Cu� ! Cu2O/CuO sequence and about 2 as for the
overall process. The M/M/k models predict an es-
sentially empty queue and an asymptotic tendency
towards the limiting mean number of participants in
the system �q � 0:434� and the limiting mean value of
the total time (1=l � 8:02 as), as k is increased. Both
limiting values are practically reached at k � 3. It is
instructive to note that in classical theory the time
required for electron transfer at an electrode is e0=i,
that is, about 160 as at i � 1mAcmÿ2 for a mono-
valent ion participating in a nonoscillatory electrode
reaction.

7. Final remarks

The material presented here demonstrates only an
elementary application of queuing theory to complex
electrode processes. The exploration of advanced
aspects of the theory (e.g., [19±21]), although an in-
viting challenge to electrochemical researchers inter-
ested in probability theory, is beyond the scope of this
paper. Probability-based approaches do not obviate
the need for deterministic experimental research
(costly as it may be), but they provide an alternative
interpretation of experimental observations related to
processes whose exact mechanism is unknown.
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